Why should we care about snow in the mountains?

Mountain regions worldwide are the water-towers of the Earth.  The Australian Alps produce over half of river flows in the Murray-Darling Basin which contain > 45% of Australia’s irrigated production (which is valued at more than $10B per annum). In addition, reliable winter snowfalls contribute >65% of the annual precipitation of the region, and the mountains host more than 2.5M visitors annually, with three quarters of tourists visiting the snowfields in winter, contributing roughly $960M annually in revenue for Victoria alone. Spring snowmelt into high country aqueducts and dams represents Australia’s largest energy store in the form of hydroelectricity. These local and regional economies can only exist because of a climate that produces regular snowfalls, and a mostly intact, adapted and resilient alpine environment. The alpine environment regulates water flows, controls soil erosion and provides habitat for many endangered and threatened plant and animal species. Indeed, the ecosystems of the Australian Alps are one of 11 Australian centres of plant diversity, one of 187 global biodiversity hotspots and they even include a RAMSAR listed site, Blue Lake, in Kosciuszko National Park.  Alpine ecosystems – from bogs and fens to snowpatches – and some of their unique species (like Australia’s only hibernating alpine animal, the Mountain Pygmy Possum) rely on snow for protection from frosts and strong winds, for insulating soils, providing a steady water supply and as a cue for phenological events. Some species, like Snow Algae, even rely entirely on late melting snowpack as a habitat substrate.

It’s difficult to imagine the Australian Alps without snow. But predictable snowfalls and lasting snowpack are already dwindling, and a projected 30-70% decline in annual maximum snow depth relative to 1990 levels by 2050 (under a low-emissions scenario) seems likely. The ability of the Australian alpine environment to function properly without reliable snowcover and a lasting snowpack is unknown. Surprisingly, studies of snow ecology in Australia are few, and we do not have a good understanding of how, where or when snowpack interacts with vegetation or drives soil water content across the alpine landscape and, in turn, how this affects alpine plant growth in the months following snowmelt. But thankfully, that’s about to change.

Led by Dr Susanna Venn and Dr Adam Miller (Deakin University), with collaborators at the Australian National University, RMIT University and the Research Centre for Applied Alpine Ecology, La Trobe University, a new research project funded by the Australian Research Council and partners (alpine ski resorts, alpine nurseries, Parks Victoria and the Royal Botanic Gardens in Melbourne) will investigate how the Australian Alps will fare with declines in snowcover. Titled “Mountain champions: building resilience into alpine environments for a low-snow future”, the Research Group will assess whether alpine species have the regeneration and adaptive capacity to thrive under new climates, as well determining their tolerances to the extreme temperatures they will face in the future. The research also aims to determine which areas of the alpine landscape are most at-risk of collapse without snow.  The project kicks off in 2021 (with post-graduate student and volunteer opportunities) and we look forward to working with our partners to help better understand “ice ecology” and to map a brighter future for our snow-covered ecosystems. Stay tuned for updates.

Snowdrift at Mount Hotham, spring 2020